152 research outputs found

    Connectivity for bridge-alterable graph classes

    Full text link
    A collection of graphs is called bridge-alterable if, for each graph G with a bridge e, G is in the class if and only if G-e is. For example the class of forests is bridge-alterable. For a random forest FnF_n sampled uniformly from the set of forests on vertex set {1,..,n}, a classical result of Renyi (1959) shows that the probability that FnF_n is connected is eβˆ’1/2+o(1)e^{-1/2 +o(1)}. Recently Addario-Berry, McDiarmid and Reed (2012) and Kang and Panagiotou (2013) independently proved that, given a bridge-alterable class, for a random graph RnR_n sampled uniformly from the graphs in the class on {1,..,n}, the probability that RnR_n is connected is at least eβˆ’1/2+o(1)e^{-1/2 +o(1)}. Here we give a more straightforward proof, and obtain a stronger non-asymptotic form of this result, which compares the probability to that for a random forest. We see that the probability that RnR_n is connected is at least the minimum over 25n<t≀n\frac25 n < t \leq n of the probability that FtF_t is connected.Comment: Amplified the discussion on raising the lower bound 2/5 to 1/

    Random graphs from a weighted minor-closed class

    Full text link
    There has been much recent interest in random graphs sampled uniformly from the n-vertex graphs in a suitable minor-closed class, such as the class of all planar graphs. Here we use combinatorial and probabilistic methods to investigate a more general model. We consider random graphs from a `well-behaved' class of graphs: examples of such classes include all minor-closed classes of graphs with 2-connected excluded minors (such as forests, series-parallel graphs and planar graphs), the class of graphs embeddable on any given surface, and the class of graphs with at most k vertex-disjoint cycles. Also, we give weights to edges and components to specify probabilities, so that our random graphs correspond to the random cluster model, appropriately conditioned. We find that earlier results extend naturally in both directions, to general well-behaved classes of graphs, and to the weighted framework, for example results concerning the probability of a random graph being connected; and we also give results on the 2-core which are new even for the uniform (unweighted) case.Comment: 46 page

    Connectivity for random graphs from a weighted bridge-addable class

    Full text link
    There has been much recent interest in random graphs sampled uniformly from the n-vertex graphs in a suitable structured class, such as the class of all planar graphs. Here we consider a general 'bridge-addable' class of graphs - if a graph is in the class and u and v are vertices in different components then the graph obtained by adding an edge (bridge) between u and v must also be in the class. Various bounds are known concerning the probability of a random graph from such a class being connected or having many components, sometimes under the additional assumption that bridges can be deleted as well as added. Here we improve or amplify or generalise these bounds. For example, we see that the expected number of vertices left when we remove a largest component is less than 2. The generalisation is to consider 'weighted' random graphs, sampled from a suitable more general distribution, where the focus is on the bridges.Comment: 23 page

    Modularity of regular and treelike graphs

    Full text link
    Clustering algorithms for large networks typically use modularity values to test which partitions of the vertex set better represent structure in the data. The modularity of a graph is the maximum modularity of a partition. We consider the modularity of two kinds of graphs. For rr-regular graphs with a given number of vertices, we investigate the minimum possible modularity, the typical modularity, and the maximum possible modularity. In particular, we see that for random cubic graphs the modularity is usually in the interval (0.666,0.804)(0.666, 0.804), and for random rr-regular graphs with large rr it usually is of order 1/r1/\sqrt{r}. These results help to establish baselines for statistical tests on regular graphs. The modularity of cycles and low degree trees is known to be close to 1: we extend these results to `treelike' graphs, where the product of treewidth and maximum degree is much less than the number of edges. This yields for example the (deterministic) lower bound 0.6660.666 mentioned above on the modularity of random cubic graphs.Comment: 25 page

    Random graphs from a block-stable class

    Full text link
    A class of graphs is called block-stable when a graph is in the class if and only if each of its blocks is. We show that, as for trees, for most nn-vertex graphs in such a class, each vertex is in at most (1+o(1))log⁑n/log⁑log⁑n(1+o(1)) \log n / \log\log n blocks, and each path passes through at most 5(nlog⁑n)1/25 (n \log n)^{1/2} blocks. These results extend to `weakly block-stable' classes of graphs

    Random graphs with few disjoint cycles

    Full text link
    The classical Erd\H{o}s-P\'{o}sa theorem states that for each positive integer k there is an f(k) such that, in each graph G which does not have k+1 disjoint cycles, there is a blocker of size at most f(k); that is, a set B of at most f(k) vertices such that G-B has no cycles. We show that, amongst all such graphs on vertex set {1,..,n}, all but an exponentially small proportion have a blocker of size k. We also give further properties of a random graph sampled uniformly from this class; concerning uniqueness of the blocker, connectivity, chromatic number and clique number. A key step in the proof of the main theorem is to show that there must be a blocker as in the Erd\H{o}s-P\'{o}sa theorem with the extra `redundancy' property that B-v is still a blocker for all but at most k vertices v in B

    Hamilton cycles, minimum degree and bipartite holes

    Full text link
    We present a tight extremal threshold for the existence of Hamilton cycles in graphs with large minimum degree and without a large ``bipartite hole`` (two disjoint sets of vertices with no edges between them). This result extends Dirac's classical theorem, and is related to a theorem of Chv\'atal and Erd\H{o}s. In detail, an (s,t)(s, t)-bipartite-hole in a graph GG consists of two disjoint sets of vertices SS and TT with ∣S∣=s|S|= s and ∣T∣=t|T|=t such that there are no edges between SS and TT; and Ξ±~(G)\widetilde{\alpha}(G) is the maximum integer rr such that GG contains an (s,t)(s, t)-bipartite-hole for every pair of non-negative integers ss and tt with s+t=rs + t = r. Our central theorem is that a graph GG with at least 33 vertices is Hamiltonian if its minimum degree is at least Ξ±~(G)\widetilde{\alpha}(G). From the proof we obtain a polynomial time algorithm that either finds a Hamilton cycle or a large bipartite hole. The theorem also yields a condition for the existence of kk edge-disjoint Hamilton cycles. We see that for dense random graphs G(n,p)G(n,p), the probability of failing to contain many edge-disjoint Hamilton cycles is (1βˆ’p)(1+o(1))n(1 - p)^{(1 + o(1))n}. Finally, we discuss the complexity of calculating and approximating Ξ±~(G)\widetilde{\alpha}(G)

    Random Perfect Graphs

    Full text link
    We investigate the asymptotic structure of a random perfect graph PnP_n sampled uniformly from the perfect graphs on vertex set {1,…,n}\{1,\ldots,n\}. Our approach is based on the result of Pr\"omel and Steger that almost all perfect graphs are generalised split graphs, together with a method to generate such graphs almost uniformly. We show that the distribution of the maximum of the stability number Ξ±(Pn)\alpha(P_n) and clique number Ο‰(Pn)\omega(P_n) is close to a concentrated distribution L(n)L(n) which plays an important role in our generation method. We also prove that the probability that PnP_n contains any given graph HH as an induced subgraph is asymptotically 00 or 12\frac12 or 11. Further we show that almost all perfect graphs are 22-clique-colourable, improving a result of Bacs\'o et al from 2004; they are almost all Hamiltonian; they almost all have connectivity ΞΊ(Pn)\kappa(P_n) equal to their minimum degree; they are almost all in class one (edge-colourable using Ξ”\Delta colours, where Ξ”\Delta is the maximum degree); and a sequence of independently and uniformly sampled perfect graphs of increasing size converges almost surely to the graphon WP(x,y)=12(1[x≀1/2]+1[y≀1/2])W_P(x, y) = \frac12(\mathbb{1}[x \le 1/2] + \mathbb{1}[y \le 1/2])

    Independent sets in graphs with given minimum degree

    Full text link
    We consider numbers and sizes of independent sets in graphs with minimum degree at least dd, when the number nn of vertices is large. In particular we investigate which of these graphs yield the maximum numbers of independent sets of different sizes, and which yield the largest random independent sets. We establish a strengthened form of a conjecture of Galvin concerning the first of these topics
    • …
    corecore